I. N. Levine, Physical chemistry, 5. ed. Boston: McGraw-Hill, 2002. [2] P. W. Atkins and J. De Paula, Atkins’ Physical chemistry, Tenth edition. Oxford ; New York: Oxford University Press, 2014. [3] R. Chang, Chemistry. Boston: McGraw-Hill Higher Education, 2007. [4] B. K. Sharma, Instrumental Methods of Chemical Analysis, 9th Edition. Krishna Prakashan Media India, 2000. [5] M. Viswanathan, Principles of Practical Chemistry. India, 2008.
[1] I. N. Levine, Physical chemistry, 5. ed. Boston: McGraw-Hill, 2002. [2] P. W. Atkins and J. De Paula, Atkins’ Physical chemistry, Tenth edition. Oxford ; New York: Oxford University Press, 2014. [3] R. Chang, Chemistry. Boston: McGraw-Hill Higher Education, 2007. [4] B. K. Sharma, Instrumental Methods of Chemical Analysis, 9th Edition. Krishna Prakashan Media India, 2000. [5] M. Viswanathan, Principles of Practical Chemistry. India, 2008. [6] G. H. Jeffery, J. Basset, J. Mendham, and R. C. Denney, Eds., Vogel’s textbook of quantitative chemical analysis, 5. ed., rev. Harlow: Longman, 1989. [7] G. O. Ojokoku, Practical Chemistry for Senior Secondary Schools, PTDF Edition. Ibadan, Oyo-state: Gbabeks Publishers limited. [8] “Gravimetry,” California State University,U.S.A 2013. [9] B. Sadhukhan, N. K. Mondal, and S. Chattoraj, “Optimisation using central composite design (CCD) and the desirability function for sorption of methylene blue from aqueous solution onto Lemna major,” Karbala Int. J. Mod. Sci., vol. 2, no. 3, pp. 145–155, Sep. 2016. [10] R. Bhaumik, N. K. Mondal, S. Chattoraj, and J. K. Datta, “Application of Response Surface Methodology for Optimization of Fluoride Removal Mechanism by Newely Developed Biomaterial,” Am. J. Anal. Chem., vol. 04, no. 08, pp. 404–419, 2013. [11] M. Mourabet, A. El Rhilassi, H. El Boujaady, M. Bennani-Ziatni, and A. Taitai, “Use of response surface methodology for optimization of fluoride adsorption in an aqueous solution by Brushite,” Arab. J. Chem., vol. 10, pp. S3292–S3302, May 2017. [12] S. Raissi and R.-E. Farsani, “Statistical Process Optimization Through Multi-Response Surface Methodology,” vol. 3, no. 3, p. 5, 2009. [13] A. Zafari, M. H. Kianmehr, and R. Abdolahzadeh, “Modeling the effect of extrusion parameters on density of biomass pellet using artificial neural network,” Int. J. Recycl. Org. Waste Agric., vol. 2, no. 1, p. 9, 2013. [14] E. Betiku, S. S. Okunsolawo, S. O. Ajala, and O. S. Odedele, “Performance evaluation of artificial neural network coupled with generic algorithm and response surface methodology in modeling and optimization of biodiesel production process parameters from shea tree (Vitellaria paradoxa) nut butter,” Renew. Energy, vol. 76, pp. 408–417, Apr. 2015. [15] T. Muppaneni et al., “Optimization of biodiesel production from palm oil under supercritical ethanol conditions using hexane as co-solvent: A response surface methodology approach,” Fuel, vol. 107, pp. 633–640, May 2013. [16] A. Rai, B. Mohanty, and R. Bhargava, “Supercritical extraction of sunflower oil: A central composite design for extraction variables,” Food Chem., vol. 192, pp. 647–659, Feb. 2016. [17] R. Mohammadi, M. A. Mohammadifar, A. M. Mortazavian, M. Rouhi, J. B. Ghasemi, and Z. Delshadian, “Extraction optimization of pepsin-soluble collagen from eggshell membrane by response surface methodology (RSM),” Food Chem., vol. 190, pp. 186–193, Jan. 2016. [18] M. J. Ahmed and S. K. Theydan, “Optimization of microwave preparation conditions for activated carbon from Albizia lebbeck seed pods for methylene blue dye adsorption,” J. Anal. Appl. Pyrolysis, vol. 105, pp. 199–208, Jan. 2014. [19] E. H. Ezechi, S. R. bin M. Kutty, A. Malakahmad, and M. H. Isa, “Characterization and optimization of effluent dye removal using a new low cost adsorbent: Equilibrium, kinetics and thermodynamic study,” Process Saf. Environ. Prot., vol. 98, pp. 16–32, Nov. 2015. [20] R. Kumar and P. Pal, “Response surface-optimized Fenton’s pre-treatment for chemical precipitation of struvite and recycling of water through downstream nanofiltration,” Chem. Eng. J., vol. 210, pp. 33–44, Nov. 2012. [21] D. Krishnaiah, A. Bono, R. Sarbatly, R. Nithyanandam, and S. M. Anisuzzaman, “Optimisation of spray drying operating conditions of Morinda citrifolia L. fruit extract using response surface methodology,” J. King Saud Univ. – Eng. Sci., vol. 27, no. 1, pp. 26–36, Jan. 2015. [22] A. Bono, S. M. Anisuzzaman, and O. W. Ding, “Effect of process conditions on the gel viscosity and gel strength of semi-refined carrageenan (SRC) produced from seaweed (Kappaphycus alvarezii),” J. King Saud Univ. – Eng. Sci., vol. 26, no. 1, pp. 3–9, Jan. 2014. [23] K. Aroonsingkarat and N. Hansupalak, “Prediction of styrene conversion of polystyrene/natural rubber graft copolymerization using reaction conditions: Central composite design versus artificial neural networks,” J. Appl. Polym. Sci., vol. 128, no. 4, pp. 2283–2290, May 2013. [24] N. Sresungsuwan and N. Hansupalak, “Prediction of mechanical properties of compatibilized styrene/natural-rubber blend by using reaction conditions: Central composite design vs. artificial neural networks,” J. Appl. Polym. Sci., vol. 127, no. 1, pp. 356–365, Jan. 2013. [25] R. U. Owolabi, M. A. Usman, and A. J. Kehinde, “Modelling and optimization of process variables for the solution polymerization of styrene using response surface methodology,” J. King Saud Univ. – Eng. Sci., vol. 30, no. 1, pp. 22–30, Jan. 2018.